有关树的理论部分描述:;
下面代码均基于python实现,包含:
- 二叉树的前序、中序、后序遍历的递归算法和非递归算法;
- 层次遍历;
- 由前序序列、中序序列重构二叉树;
- 由后序序列、中序序列重构二叉树;
# -*- coding: utf-8 -*-# @Time: 2019-04-15 18:35# @Author: chenclass NodeTree: def __init__(self, root=None, lchild=None, rchild=None): """创建二叉树 Argument: lchild: BinTree 左子树 rchild: BinTree 右子树 Return: Tree """ self.root = root self.lchild = lchild self.rchild = rchildclass BinTree: # -----------前序遍历 ------------ # 递归算法 def pre_order_recursive(self, T): if T == None: return print(T.root, end=' ') self.pre_order_recursive(T.lchild) self.pre_order_recursive(T.rchild) # 非递归算法 def pre_order_non_recursive(self, T): """借助栈实现前驱遍历 """ if T == None: return stack = [] while T or len(stack) > 0: if T: stack.append(T) print(T.root, end=' ') T = T.lchild else: T = stack[-1] stack.pop() T = T.rchild # -----------中序遍历 ------------ # 递归算法 def mid_order_recursive(self, T): if T == None: return self.mid_order_recursive(T.lchild) print(T.root, end=' ') self.mid_order_recursive(T.rchild) # 非递归算法 def mid_order_non_recursive(self, T): """借助栈实现中序遍历 """ if T == None: return stack = [] while T or len(stack) > 0: if T: stack.append(T) T = T.lchild else: T = stack.pop() print(T.root, end=' ') T = T.rchild # -----------后序遍历 ------------ # 递归算法 def post_order_recursive(self, T): if T == None: return self.post_order_recursive(T.lchild) self.post_order_recursive(T.rchild) print(T.root, end=' ') # 非递归算法 def post_order_non_recursive(self, T): """借助两个栈实现后序遍历 """ if T == None: return stack1 = [] stack2 = [] stack1.append(T) while stack1: node = stack1.pop() if node.lchild: stack1.append(node.lchild) if node.rchild: stack1.append(node.rchild) stack2.append(node) while stack2: print(stack2.pop().root, end=' ') return # -----------层次遍历 ------------ def level_order(self, T): """借助队列(其实还是一个栈)实现层次遍历 """ if T == None: return stack = [] stack.append(T) while stack: node = stack.pop(0) # 实现先进先出 print(node.root, end=' ') if node.lchild: stack.append(node.lchild) if node.rchild: stack.append(node.rchild) # ----------- 前序遍历序列、中序遍历序列 —> 重构二叉树 ------------ def tree_by_pre_mid(self, pre, mid): if len(pre) != len(mid) or len(pre) == 0 or len(mid) == 0: return T = NodeTree(pre[0]) index = mid.index(pre[0]) T.lchild = self.tree_by_pre_mid(pre[1:index+1], mid[:index]) T.rchild = self.tree_by_pre_mid(pre[index+1:], mid[index+1:]) return T # ----------- 后序遍历序列、中序遍历序列 —> 重构二叉树 ------------ def tree_by_post_mid(self, post, mid): if len(post) != len(mid) or len(post) == 0 or len(mid) == 0: return T = NodeTree(post[-1]) index = mid.index(post[-1]) T.lchild = self.tree_by_post_mid(post[:index], mid[:index]) T.rchild = self.tree_by_post_mid(post[index:-1], mid[index+1:]) return Tif __name__ == '__main__': # ----------- 测试:前序、中序、后序、层次遍历 ----------- # 创建二叉树 nodeTree = NodeTree(1, lchild=NodeTree(2, lchild=NodeTree(4, rchild=NodeTree(7))), rchild=NodeTree(3, lchild=NodeTree(5), rchild=NodeTree(6))) T = BinTree() T.pre_order_recursive(nodeTree) # 前序遍历-递归 print('\n') T.pre_order_non_recursive(nodeTree) # 前序遍历-非递归 print('\n') T.mid_order_recursive(nodeTree) # 中序遍历-递归 print('\n') T.mid_order_non_recursive(nodeTree) # 前序遍历-非递归 print('\n') T.post_order_recursive(nodeTree) # 后序遍历-递归 print('\n') T.post_order_non_recursive(nodeTree) # 前序遍历-非递归 print('\n') T.level_order(nodeTree) # 层次遍历 print('\n') print('==========================================================================') # ----------- 测试:由遍历序列构造二叉树 ----------- T = BinTree() pre = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'] mid = ['B', 'C', 'A', 'E', 'D', 'G', 'H', 'F', 'I'] post = ['C', 'B', 'E', 'H', 'G', 'I', 'F', 'D', 'A'] newT_pre_mid = T.tree_by_pre_mid(pre, mid) # 由前序序列、中序序列构造二叉树 T.post_order_recursive(newT_pre_mid) # 获取后序序列 print('\n') newT_post_mid = T.tree_by_post_mid(post, mid) # 由后序序列、中序序列构造二叉树 T.pre_order_recursive(newT_post_mid) # 获取前序序列
测试用的两个二叉树: